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STRUCTURE DETAILS ON L0SSES IN COPLANAR WAVEGUIDE
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ABSTRACT

The influence of technological details like two-layer structure
of conducting strips, layer misalignment, non-rectangular
conductor shape, dielectric cover or support layers on
losses in CPW with small lateral dimensions is investigated
by means of the hybrid-waeve Boundary Integral Equation
Method (BIEM). A short account of recent developments
in this method, as required for this investigation, is given
with focus on two concepts of general interest, the Method
of Least Squares with Intermediate Projection (MLSIP) and
a regularization approach.

INTRODUCTION

Conductor losses play an important role in CPW based
MMICs, in particular in millimeter wave designs with small
lateral dimensions. If conductor thickness, strip width and
strip separation are only a few multiples of skin depth, at-
tenuation factor and effective permittivity are significantly
increased.

Accurate loss prediction requires full-wave analysis in this
case and consideration of finite conductor thickness and con-
ductivity has become state of the art (e.g. [1, 2]). Neverthe-
less, few results are available for small lateral dimensions
(e.g. [1, 3]). Most results apply to relatively wide slots,
where propagation constant and attenuation are less sensi-
tive to the details of the current distribution. There is also
an obvious lack of information as to the influence of conduc-
tor shape and structure details. The present investigation
compares the “generic® CPW model of Fig. 1A against more
realistic models, including

(B) different conductivity of galvanic layer and base metal-
ization,

(C) lateral misalignment of these layers,

(D) inclined edges of the galvanic layer.

Furthermore, some intentional modifications of the generic
CPW structure are analyzed with respect to their effect on
losses. These are

(E) rounded conductor corners (hypothetical),
(F) a lower permittivity dielectric below conductors,

(G) a dielectric cover above the slot region.
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Fig. 1: Investigated CPW configurations.

Analysis of small CPW structures and in particular inclusion
of the above mentioned details is a challenge for most numer-
ical approaches, because spatial resolution must account for
rapid decay of the fields within conductors, high field con-
centration about conductor edges and at the same time for
the typically large aspect ratio of the ground planes. Do-
main discretization and time domain methods run to their
limits in this case. The BIEM [4, 5] is an attractive al-
ternative because it avoids domain discretization. A short
account will be given of new concepts which have been in-
troduced to extend the applicability of the BIEM to more
complex geometries.
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METHOD OF ANALYSIS

The numerical method which is applied for the present anal-
ysis is a further development in the hybrid-wave BIEM
[4, 5]. The formulation is based on a system of space domain
boundary integral equations

KlaH] - ﬁ:—c;[tE] - gc[% aE)] =0, (1)
K[eE] + ’;—2G[tH] + :yY-G[(—% aH] =0 (2)

for the axial and transverse-tangential field components
along the boundaries of each homogeneous subregion in the
structure cross-section. K and G denote double layer and
single layer boundary integral operators, A € C is the trans-
verse wavenumber, z = jwy and y = 0 + jwe. a and t rep-
resent axial and tangential unit vectors, respectively. The
system of BIEs for all subregions amounts to an eigenvalue
equation for the propagation constant ¥ € C, which also
appears in the definitions of K and G.

Discretization procedure

Discretization is exclusively in terms of the boundary values
aH,tE,aE,tH : T; — C along subregion interfaces T,.
These are regular for finite conductivity with the exception
of tE which becomes singular at the end of a dielectric or
dielectric-air interface which connects to a corner. All regu-
lar quantities are expanded into 2°9-order B-splines over an
adaptive boundary partition and edge-terms with asymp-
totically exact singular behaviour are included for tE where
required. With U = (ua,... ,un)" as shorthand for the vec-
tor of expansion functions, C = (c1,...,¢n)" € C™ for the
unknown coefficients and L(¥) for the overall BIE operator
as obtained by assemblage of the couples (1), the eigenvalue
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Fig. 2. Even mode effective permittivity for a

CPW (Fig. 1A) with w = 8pm, s = 10pum, ¢ =
100 pm, t =3 pm, o = 22.2-10°S/m on GaAs com-
pared to measurement [6] and 2D-FDTD simulation [3].

equation takes the form
L(HUTIC =0, 3)

Choosing the correct approach to the discretization of the
residual of the left hand side of (3) is a vital question in
every projection type method. The crucial point is, that
the dimension of the function space, which is occupied by
the residual, in general exceeds n, because the operator is
a different one for each inmstance of the propagation con-
stant which is encountered in the search for eigenvalues. The
Method of Moments approach to discretization with equal
numbers of expansion and weighting functions is therefore
insufficient and gives rise to spurious solutions [7]. Instead
the Method of Least Squares with Intermediate Projection
[7] is applied for the present investigation. It employs a set
of weighting functions W = (ws,... ,wm)T with approxi-
mately twice the spatial resolution as that of U, i.e. with
m 2 2n. As opposed to the Galerkin method, this approach
yields a reliable approximation of (3) in terms of

W(W, W)™ (W, L(y)[U"]))C = 0. (4)

Solutions v, € C are obtained as close to zero minima of the
smallest singular value of the m X n matrix

(W, WT)y"5(W,L()[U")). (5)

Regularization

While this approach was previously applied successfully to
a variety of guided wave problems it turned out that no
solutions at all could be found for some of the geometrically
complex structures of Fig. 1.

Because this problem is not specific to the present ap-
proach, but fundamental to integral equation formulations
which amount to compact operators, we include a short
account. The crucial point is, that for n — oo equation
(3), due to the compactness of L(¥), has an infinite set of
linearly independent approzimate solutions with arbitrarily
small residual for every value of ¥ € C. Hence, additional
restrictions on the solution space are required for finite pre-
cision calculations. Such restrictions are in fact implicitly
introduced in all numerical approaches, simply by restrict-
ing the solution space to the span of the expansion func-
tions. With an increasing number of expansion functions,
however, the regularization of the solution space, thus in-
troduced, tends to break down if the residual of the desired
solutions is dominated by some local approximation defect.
Tt may happen then, that the best approximation of the de-
sired solution in terms of U yields higher residual than some
v—independent functions with rapid spatial variation.

This indicates that the problem is not posed in the proper
solution space. Equivalently to field reconstruction from a
finite number of measurements (as considered e.g. in mi-
crowave imaging) a regularity condition must be added to
obtain a solution with a finite set of weighting functions.
The theory behind this problem was recently described in
more detail in [8]. It is believed, that full understanding
of this problem is essential for progress in other integral
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Fig. 3: Magnitude of (a) axial electric field @¢E and (b)
axial current density aJ along conductor boundaries
for configuration (B) with p = 0.5 at 40 GHz. Real and
imaginary part of @E for y = t; are given in {c).

equation approaches also. For the present investigations a
Tikhonov regularization was applied, which amounts to re-
placing the norm of (5) by

n2 ’ 1/2
(Jow. wrrtow s | + jrel) o

where R is an operator which adds a penalty for irregular,
ie. rapidly oscillating functions. In our context it basi-
cally measures the norm of the second derivatives of the un-
known field components along subregion interfaces. Other
approaches are currently under investigation.

RESULTS

To validate the method, results have been compared
against measurements and literature results, and one ex-
ample is included here as Fig. 2. Results for configurations
(A)-(G) of Fig. 1 are given in Figs. 3-5. The “generic” CPW
(A) serves as the “origin of configuration space”. In order
to isolate the specific effect of each structural modification
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Fig. 4: Same representation as in Fig. 3 but for con-
figuration (C) with p = 0.5 at 40 GHaz.

in (B)-(G), most parameters are kept fixed. Moreover, av-
erage conductivity ¢ = 11/t + g2t2/t = 33.33 S/ m and
total strip thickness ¢ = ¢; + ¢, = 3 ym are the same for
all corfigurations, only the ratio p = 01/02 is varied. An
attempt is also made to maintain some “average slot width”
for (B) and (C). The substrate is assumed to be lossless. It
is 100 gm thick and a magnetic wall is placed below. All
structures are open otherwise. The remaining dimensions
are w = 7.5um,s = 5 um,c = 20 pm, t1 = d = 0.6 pm, f =
25.5pm and a = r = 1 um:. The dielectric constants are
€1 =12.9,6:2 = 3.2 and €3 = 7.3.

With respect to loss performance, relative to configura-
tion (A), the results for configurations (B)-(G), as given in
Figs. 5a-d, can be summarized as follows:

(B) Shows no significant increase of o over that for (A)
with equal average conductivity in the range 0.5 < p <
1. The results suggest that the average conductivity
approximation is permissible for loss calculations.

(C) Misalignment has a striking effect and is a most impor-
tant source of additional losses. « is increased by more
than 75% at 80 GHz for p = 0.5, still by more than
33% for p=1.

(D) The effect in terms of attenuation per wavelength is

small.

(E) Rounded corners would have some advantage. They
reduce losses by approx. 10% at 80 GHz. :

(F,G) No particular merit in terms of attenuation per wave-

length.

The most important conclusion addresses the technologist:
precise control of base metal and galvanic layer alignment is
an effective way to reduce losses. To understand the detri-
mental effect of lateral misalignment, it is instructive to
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Fig. 5: (a) Effective permittivity, (b) characteristic impedance and (c,d) attenuation factor of the fundamental
even mode for configurations (A)-(G) of Fig. 1. Subscripts on (B) and (C) refer to the ratio p = o1/0>.

compare the distributions of axial current density and ax-
ial electric field strength for configurations (B) and (C). The
magnitudes of their boundary values are given in Figs. 3 and
4 over parts of the conductor contours. In configuration (C),
a considerable fraction of the current concentrates in the
protruding piece-of the base metalization where @ E is much
stronger than in the rest of the strip with the consequence
of large additional losses. But note that fields and currents
within the conductors are complex quantities. Fig. 3c gives
a plot of real and imaginary part of ¢ E along the base metal
- galvanic layer interface which clearly indicates evanescent
wave propagation into the conductors.
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