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ABSTRACT

The influence of technological details like two-layer structure
of conducting strips, layer misalignment, non-rectangular
conductor shape, dielectric cover or support layers on
losses in CPW with small lateral dimensions is investigated
by means of the hybrid-wave Boundary Integral Equation
Method (BIEM). A short account of recent developments
in this method, as required for this investigation, is given
with focus on two concepts of general interest, the Method
of Least Squares with Intermediate Projection (MLSIP) and

a regtdarization approach.

INTRODUCTION

Conductor losses play an important role in CPW based
MMICS, in particular in millimeter wave designs with small

lateral dimensions. Ifconductor thickness, strip width and

strip separation are only a few multiples of skin depth, at-

tenuation factor and effective permittivity are significantly

increased.

Accurate loss prediction requires full-wave analysis in this

case and consideration of finite conductor thickness and con-

ductility has become state of the art (e.g. [1,2]). Neverthe-

less, few results are available for small lateral dimensions

(e.g. [1, 3]). Most results apply to relatively wide slots,

where propagation constant and attenuation are less sensi-

tiveto the details of the current distribution. There is also

an obvious lack of information as to the influence of conduc-

tor shape and structure details. The present investigation

compares the “generic” CPW model of Fig. lA against more

realistic models, including

(B) different conductivity ofgabniclay erandbasemeta.1-

ization,

(C) Iateral misalignment of these layers,

(D) inclined edges of thegalvanic layer.

Furthermore, some intentional modifications of the generic

CPWstructure are analyzed with respect to their effect on

losses. These are

(E) rounded conductor corners (hypothetical),

(F) a lower permittivity dielectric below conductors,

(G) adielectric cover above theslot region.
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Fig. 1: Investigated CPW configurations.

Analysis of small CP W structures and in particular inclusion

of the above mentioned details is a challenge for most numer-

ical approaches, because spatial resolution must account for

rapid decay of the fields within conductors, high field con-

centration about conductor edges and at the same time for

the typically large aspect ratio of the ground planes. Do-

main discretization and time domain methods run to their

limits in this case. The BIEM [4, 5] is an attractive al-

ternative because it avoids domain discretization. A short

account will be given of new concepts which have been in-

troduced to extend the applicability of the BIEM to more

complex geometries.
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METHOD OF ANALYSIS

The numerical method which is applied for the present anal-

ysis is a fnrther development in the hybrid-wave BIEM

[4, 5]. The formulation is based on a system of space domain

boundary integral equations

K[aH] – ~G[tl?] – ~G[~ a~] = O, (1)

K[ajZ] + $G[tHJ + $G[~ aH] = O (2)

for the axial and transverse-tangential field components

alorw the boundaries of each homogeneous subregion in the

structure cross-section. K and G denote double layer and

single layer boundary integral operators, h ~ C is the trans-

verse wavenumber, z = i wu and u = a + ~ WC. a and t rep-

resent axial and tangen~i~ unit ;ect ors, respectively. The

system of BIEs for all subregions amounts to an eigenvalue

equation for the propagation constant ~ c C, which also

appears in the definitions of K and G.

Discretization procedure

Discretization is exclusively in terms of the boundary valnes

aH, tE, aE, tH : r; + C along subregion interfaces 17,.

These are regular for finite conductivity with the exception

of tE which becomes singular at the end of a dielectric or

dielectric-air interface which connects to a corner. All regu-

lar quantities are expanded into 2nd–order B-splines over-an

adaptive boundary partition and edge-terms with asymp-

totically exact singular behaviour are included for tE where

required. With U = (u1, . . . , Un)T as shorthand for the vec-

tor of expansion functions, C = (cl, . . . , c~)T E C n for the

unknown coefficients and L(y) for the overall BIE operator

as obtained by assemblage of the couples (1), the eigenvalue
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Fig. 2: Even mode effective permittivity for a

CPW (Fig. 1A) with w = 8 pm, s = 10 pm, c =

Ioopm, t= 3 pm, a = 22.2. 106 S /m on GaAs com-

pared to measurement [6] and 2D-FDTD simulation [3].

equation takes the form

L(v)[UT]C = O. (3)

Choosing the correct approach to the discretization of the

residual of the left hand side of (3) is a vital question in

every projection type method. The crucial point is, that

the dimension of the function space, which is occupied by

the residual, in general exceeds n, because the operator is

a different one for each instance of the propagation con-

st ant which is encountered in the search for eigenvalues. The

Method of Moments approach to discretization with equal

numbers of expansion and weighting functions is therefore

insufficient and gives rise to spurious soktions [7]. Instead

the Method of Least Squares with Inte~mediate Projection

[7] is applied for the present investigation. It employs a set

of weighting functions W = (w1, . . . , w~ )T with approxi-

mately twice the spatial resolution as that of U, i.e. with

m s 2n. As opposed to the Galerkin method, this approach

yields a reliable approximation of (3) in terms of

W(W, VVT)-](W, L(y)[17T])C = O. (4)

Solutions y, e C are obtained as close to zero minima of the

smallest singular value of the m x n matrix

(VV, VVT)-~(VV, L(~)[UT]). (5)

Regularization

While this approach was previously applied successfully to

a variety of guided wave problems it turned out that no

solutions at all could be found for some of the geometrically

complex structures of Fig. 1.

Because this problem is not specific to the present ap-

proach, but fundamental to integral equation formulations

which amount to compact operators, we include a short

account. The crucial point is, that for n ~ co equation

(3), due to the compactness of L(y), has an infinite set of

linearly independent approximate solutions with arbitrarily

small residual for every value of y c C. Hence, additional

restrictions on the solution space are required for finite pre-

cision calculations. Such restrictions are in fact implicitly

introduced in all numerical approaches, simply by restrict-

ing the solution space to the span of the expansion func-

tions. With an increasing number of expansion functions,

however, the regularization of the solution space, thus in-

troduced, tends to break down if the residual of the desired

solutions is dominated by some local approximation defect,

It may happen then, that the best approximation of the de-

sired solution in terms of U yields higher residual than some

~–independent functions with rapid spatial variation.

This indicates that the problem is not posed in the proper

solution space, Equivalently to field reconstruction from a

finite number of measurements (as considered e.g. in mi-

crowave imaging) a regularity condition must be added to

obtain a solution with a finite set of weighting functions.

The theory behind this problem was recently described in

more detail in [8]. It is believed, that full understanding

of this problem is essential for progress in other i~tegral
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Fig. 3: Magnitude of (a) axi; ~tric field aE and (b)

axial current density aJ along conductor boundaries

for configuration (B)with p=0.5at40GHz. Real and

imaginary part of aE for y= tl are given in (c).

equation approaches also. For the present investigations a

Tikhonov regularization was applied, which amounts tore-

placing the norm of (5) by

(II(w, wT)-*(w, L(Y)[UT])112 + llRIUT]l/2~ 1’2 (6)

where R is an operator which adds a penalty for irregular,

i.e. rapidly oscillating functions. In our context it basi-

cally measures the norm of the second derivatives of the un-

known field components along subregion interfaces. Other

approaches are currently under investigation.

RESULTS

To validate the method, results have been compared

against measurements and literature results, and one ex-

ample is included here as Fig. 2. Results for configurations

(A)-(G) of Fig. laregiven in Figs. 3-5. The’’generic’’CPW

(A)serves as the “origino fconfiguration space”. In order

to isolate the specific effect of each structural modification

aJ I

I

Fig. 4: Same representation asin Fig. 3 but for con-

figuration (C) with p= O.5at40 GHz.

in (B)–(G), most parameters are kept fixed. Moreover, av-

erage conductivity u = ultl/t+u’t’ft= 33.33 S/m and

total strip thickness i! = tl+t2 = 3pm are the same for

all configurations, only the ratiop = aI/CT2 k varied. An

attempt isalsomade to maintain some “averages lot width”

for (B) and (C). Thesubstrate is assumed to be lossless. It

is 100 pm thick and a magnetic wall is placed below. All

structures are open otherwise. The remaining dimensions

arew=7.5pm, s=5pm, c=20pm, t1 =d=0.6pm, j=

25.5 pm and a, = r = 1 pm. The dielectric constants are

6,,1 = 12.9, c,,’ = 3.2 and 6,,3 = 7.3.

With respect to loss performance, relative to configura-

tion (A), the results for configurations (B)–(G), as given in

Figs. 5a-d, can be summarized as follows:

(B)

(c)

(D)

(E)

Shows no significant increase of a over that for (A)

with equal average conductivity in the range 0.5< p <

1. The results suggest that the average conductivity y

approximation is permissible for loss calculations.

Misalignment has a striking effect and is a most impor-

tant source of additional losses. a is increased by more

than 75 Yo at 80 GHz for p = 0.5, still by more than

33% forp=l.

The effect in terms of attenuation per wavelength is

small.

Rounded corners would have some advantage. They

reduce losses by approx. 10 Yo at 80 GHz.

(F,G)

The most important conclusion addresses the technologist:

No particular merit in terms of attenuation per wave-

length.
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precise control of base metal and galvanic layer alignment is

an effective way to reduce losses. To understand the detri-

ment al effect of lateral misalignment, it is instructive to
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Fig. 5: (a) Effective permittivity, (b) characteristic impedance and (c,d) attenuation factor of the fundamental

even mode for configurations (A)–(G) of Fig. 1. Subscripts on (B) and (C) refer to the ratio p = al/az.

compare the distributions of axial current density and ax-

iale~ectric field strength for configurations (B) and (C). The

magnitudes of their boundary values are given in Figs. 3 and

4overparts of theconductor contours. Inconfiguration (C),

a considerable fraction of the current concentrates in the

protruding piece of the base metalization where a~ismuch

stronger than in the rest of the strip with the consequence

of large additional losses. But note that fields and currents

within the conductors are complex quantities. Fig. 3C gives

a plot ofreal and imaginary part ofalZ along the base metaJ

–galvanic layer interface which clearly indicates evanescent

wave propagation into the conductors.
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